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Abstract

We introduce Autonomous Reasoning Systems (ARS), a network of con-
tinuously operating AI agents organized as a pre-designed responsibility
topology. Through recursive cognitive decomposition during the design
phase, the job is factored into a hierarchy where each agent reasons about a
bounded information surface�a de�ned view of job state it can observe and
act upon. Parent agents reason about aggregated views from their children,
delegating �ner-grained reasoning downward; this recursive decomposition
distributes reasoning complexity across the topology rather than concen-
trating it in any single agent. This dimensional shift�decomposing job
state space rather than tasks�allows the vast implicit context humans
rely on to become explicit and bounded within each agent's information
surface. Agents use reasoning-as-control (LLM-based planning and self-
critique) rather than rule execution, and interact through tools with struc-
tured inputs and outputs. Unlike typical agent systems that assemble work-
�ows dynamically from user prompts, ARS embodies mission-by-design:
the topology, agent responsibilities, and vertical coordination paths are de-
�ned up front and reused across all situations the job faces. Critically,
no single agent reasons about the complete job; instead, job-level intelli-
gence emerges from vertical interactions. The system operates inde�nitely
through event-driven activation: agents dynamically create and manage
their own subscriptions to relevant events, respond to scheduled tasks, and
handle con�gured triggers. By decomposing cognition into bounded in-
formation surfaces, ARS prevents cognitive collapse and enables long-term
operation on complex jobs. This technical note de�nes ARS as a new cate-
gory of autonomous systems, establishes conformance criteria, and positions
it within the current landscape of agent SDKs and frameworks.

Key Terms

Agent An LLM-based worker running its own reasoning loop with
dedicated tools, operating over a bounded information surface.

Job The speci�c, ongoing work the ARS is designed to perform
(e.g., operating a facility, managing a service, coordinating
logistics).

Topology The pre-designed network of agents with de�ned parent-child
relationships and coordination paths; created through recur-
sive cognitive decomposition.

Bounded information surface
The limited portion of job state an agent observes and reasons
about; prevents cognitive collapse by ensuring no agent faces
unbounded complexity.

Event plane The pub/sub infrastructure through which agents create sub-
scriptions, receive scheduled triggers, and handle con�gured
events for continuous operation.

Actuation/Commit
Actions that create tracked commitments (writes to shared
state, system changes, or owner-backed tasks) rather than pure
advice.
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1 Core Concept

An Autonomous Reasoning System (ARS) is a network of AI agents organized
as a pre-designed responsibility topology (tree or DAG) created through recur-
sive cognitive decomposition. Each agent runs its own LLM-based reasoning
loop over a bounded information surface�a de�ned view of job state it can ob-
serve and act upon. Parent agents reason about aggregated views from their
children, delegating �ner-grained reasoning downward; this distributes reasoning
complexity across the hierarchy rather than concentrating it. Job-level intelli-
gence emerges from vertical interactions�no single agent reasons about the com-
plete job. Agents use reasoning-as-control (LLM-based planning, self-critique,
and adaptive decision-making) and operate continuously through event-driven
activation.

Key characteristics:

� Mission-by-design: topology and responsibilities de�ned up front, reused
across all situations

� Event-driven scalability: agents manage their own subscriptions and sched-
ules, enabling real job-scale operation

� Vertical coordination with emergent intelligence: delegate down, execute
within scope, report up�job-level intelligence emerges from aggregation

� Bounded information surfaces: prevents cognitive collapse through limited
observational and reasoning scope

One-liner

Job-�rst autonomy: a mission-driven, event-fed, vertically coordinated network

of bounded agents that thinks with context and acts with intent.

2 Why This Is a New Category

The landscape of agent frameworks�LangGraph, AutoGen, CrewAI, OpenAI's
AgentKit, AWS Bedrock�has matured rapidly. These platforms excel at as-
sembling multi-agent work�ows dynamically in response to user prompts. They
are mostly mission-on-demand: given a goal, they orchestrate agents, allocate
tasks, and coordinate execution. This �exibility is valuable for general-purpose
AI assistance.

ARS takes a fundamentally di�erent approach: mission-by-design. The
job's responsibility topology, agent responsibilities, and coordination paths are
de�ned during a design phase�informed by operational expertise about the spe-
ci�c job�and then reused across all situations that job encounters. Human
prompts become just another type of event, with priority and routing determined
by the pre-designed structure, not by dynamic interpretation.

The dimensional shift: Traditional agent frameworks decompose tasks
into sub-tasks. This approach fails at job-scale complexity because even simple
tasks require vast implicit context for coherent execution�organizational norms,
domain knowledge, relationship dynamics, timing considerations. LLMs struggle
to maintain this unbounded implicit context, leading to incoherent decisions as
jobs scale in complexity and duration.

ARS decomposes along a fundamentally di�erent dimension: the job's state
space itself, not its tasks. Through recursive cognitive decomposition during the
design phase, the job is factored into a topology where each agent reasons about
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a bounded information surface�a de�ned slice of job state it continuously ob-
serves and acts upon. This dimensional shift enables a critical transformation:
the vast implicit context humans rely on becomes explicit, bounded, and em-
bedded within each agent's de�ned information surface. Parent agents reason
about aggregated views summarized from their children, delegating �ner-grained
reasoning downward.

At every level, agents interact through tools with structured inputs and out-
puts�communicating with parents, children, external systems, or humans. Crit-
ically, no single agent reasons about the complete job; instead, job-level intelli-
gence emerges from vertical interactions across the topology. Each agent faces
only a bounded reasoning problem regardless of overall job scale, because the
implicit context required for coherence has been made explicit within its infor-
mation surface boundaries.

This is not �hardcoding� in the limiting sense. Rather, it encodes a combina-
tion of operational knowledge and human thinking process into the system archi-
tecture, eliminating the continuous human-in-the-loop realignment and prompt
engineering required to keep general-purpose frameworks on track for specialized,
long-running jobs. The mission is embedded in the topology itself.

The category emerges from the combination: pre-designed topology
+ standing mission + continuous operation + vertical coordination + event-
driven activation + bounded information surfaces. Existing frameworks may o�er
subsets of these capabilities, but ARS makes them foundational requirements.
The result is a system optimized not for prompt-to-answer �exibility, but for
job-to-completion persistence. (See Section 5 for further discussion of current
frameworks.)

3 Minimum Conformance Checklist

Core Principles

The ARS category is built on four foundational principles. The conformance
requirements that follow implement and enforce these principles:

I. Mission-by-design. The job's topology, agent responsibilities, and coordi-
nation paths are designed during a design phase�informed by operational
expertise�and reused across all situations, not assembled dynamically per
task.

II. Recursive cognitive decomposition. Through recursive decomposition,
the job is factored into a topology where each agent reasons about a bounded
information surface. Parent agents reason about aggregated views, delegat-
ing �ner-grained reasoning downward. No single agent reasons about the
complete job; job-level intelligence emerges from vertical interactions across
the topology.

III. Vertical coordination with emergent intelligence. Agents delegate
downward, execute within bounded scope, and report upward. Intelligence
aggregates through the topology rather than being centralized in any single
agent.

IV. Continuous, event-driven operation. The system operates inde�nitely
through subscriptions, schedules, and con�gured triggers, with agents man-
aging their own activations within the standing mission structure.
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Conformance Requirements

An implementation may claim to be an ARS if it provides the following capabil-
ities. Each requirement serves a speci�c purpose in enabling the core principles
above:

1. Topology speci�cation (declarative).
A machine-readable de�nition of agent responsibilities, information surfaces,
vertical links (parent/child relationships), and allowed delegation/reporting
patterns. This encodes the job's reasoning architecture and enables the mission-
by-design approach�operational expertise is embedded in the topology itself,
not discovered at runtime.

2. Persistent, recoverable state.
Each agent maintains its state as an ongoing conversation thread, including
subscribed events and messages exchanged through the topology. The critical
value lies in the distributed, interconnected context across all agents�knowledge
aggregates at di�erent abstraction levels, enabling the system to zoom in for
detail or zoom out for high-level view as questions demand, without cognitive
collapse. While state persistence across restarts is strongly recommended for
production systems, even reinitializing preserves this distributed knowledge
architecture.

3. Event plane with pub/sub and backpressure.
In addition to built-in triggers and schedules, agents can dynamically create
subscriptions to event streams, schedule periodic tasks, and handle con�g-
ured events. Backpressure mechanisms prevent overload. This is essential
for scalability�event-driven activation replaces polling and enables agents to
operate asynchronously at real-world job scale, including scenarios where mul-
tiple ARS systems may subscribe to similar event streams.

4. Vertical messaging semantics.
Clear primitives for agents to communicate within their authority: delega-
tion/demands to children, execution within scope, responses/reports to par-
ents. Any agent can initiate messages based on its responsibility and context,
not just in response to parent requests. Messages are correlated to track ex-
changes. This implements the coordination model that prevents agents from
becoming disconnected reasoners.

5. Memory surfaces.
Each agent maintains working memory (current case/context) and can access
experience memory. The system-level view emerges from the properly dis-
tributed responsibility topology itself. For real-world tasks, external/retrieval
memory via tools (databases, knowledge bases) is typically essential�this is
where operational expertise is built and distributed across the system.

6. Actuation with commit semantics.
Agents execute actions that create tracked commitments: writes to shared
job state, external system changes, or owner/SLA-backed tasks. This distin-
guishes ARS from purely advisory systems�actions have commit semantics,
creating obligations that the system must track and ful�ll. Pure advice with-
out tracked commitment does not constitute actuation.

7. Scalability assurance through bounded information surfaces.
The topology must be designed such that each agent's information surface�the
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portion of job state it observes and reasons about�remains bounded and
within current model capabilities. Leaf agents observe detailed views of nar-
row domains; parent agents observe aggregated summaries from their children,
not raw data. When an agent encounters questions or tasks outside its de-
�ned responsibility, it delegates to a more specialized child or escalates to
its parent�it does not expand beyond its information surface boundaries.
This cognitive decomposition prevents collapse: each agent faces a bounded
reasoning problem regardless of overall job complexity or duration. During
development and testing, detecting information surfaces that prove too com-
plex for model coherence requires topology reengineering; this is part of the
design process, not a runtime failure.

Note: Systems lacking any of these elements may be useful multi-agent frame-
works, but they do not conform to the ARS category as de�ned here.

Production recommendation: Systems deployed in production environments
should include forensic replay ledgers (capturing inputs, model versions, prompts,
outputs, and causal links) to support audit and debugging, though this is not
required for v0.1 conformance.

Design challenge: Creating an ARS topology requires two distinct capabili-
ties: (1) domain expertise�deep knowledge of the job's operational reality, and
(2) cognitive introspection�the ability to articulate one's own thinking process.
The designer must identify what implicit context enables coherent reasoning at
each level: What portions of job reality must each agent observe? What implicit
knowledge must become explicit? What are the natural aggregation boundaries
where detailed context compresses into summary views? This is not conventional
task breakdown; it is the externalization of implicit operational knowledge into
an explicit topology of bounded observational surfaces. This dual requirement
(domain knowledge + cognitive self-awareness) represents a signi�cant design
barrier. Future ARS implementations may enable self-improvement through col-
laboration with human experts or advanced models to extend or modify their
own operational topologies, potentially lowering this barrier, but this is not a
conformance requirement for v0.1.

4 Industry Landscape

During the past few months and continuing through October 2025 marked a mat-
uration point for production multi-agent systems, with major vendors shipping
integrated tooling for agent design, orchestration, and governance.

OpenAI launched AgentKit (October 6, 2025) [1], providing Agent Builder
for visual multi-agent work�ow design, ChatKit for embeddable UIs, and en-
hanced Evals with reinforcement �ne-tuning hooks. The toolchain is work�ow-
centric with session-scoped execution; whether it supports standing missions
depends on the chosen hosting runtime (e.g., deployed on LangGraph Server,
Microsoft Agent Framework, or AWS AgentCore).

AWS took Bedrock AgentCore to general availability (October 13) [2], of-
fering a session-isolated microVM runtime (Firecracker) with max 8-hour ses-
sions/async jobs, A2A protocol, MCP Gateway, and governance features. Agent-
Core provides production infrastructure for multi-agent systems (integrating with
LangGraph, CrewAI, OpenAI Agents); mission continuity beyond 8 hours re-
quires session rollover and externalized topology state.

6



Anthropic released Claude Sonnet 4.5 and the Claude Agent SDK (Septem-
ber 29) [3, 4], emphasizing long-horizon autonomy with observed 30+ hour co-
herent operation on complex tasks. The SDK exposes agent loop primitives
(subagents, context compaction, memory tools) and positions itself for sustained
autonomous work�closer to ARS's continuous operation model, though without
pre-designed job topologies.

LangGraph reached 1.0 (October 17 tag / October 22 blog) [5], formal-
izing a durable runtime via LangGraph Server with built-in persistence (Post-
greSQL), task queues (Redis), assistants/threads/runs, cron jobs, and webhooks.
The platform provides checkpointing, human-in-the-loop interrupts, and tracing.
LangGraph Server supports standing agents with durable state across threads,
though topology governance (authority schemas, responsibility constraints) must
be implemented at the application level.

Microsoft introduced the Agent Framework (October 1) [6], consolidating
AutoGen and Semantic Kernel into a uni�ed SDK/runtime for multi-agent appli-
cations. CrewAI continued platform updates [7] with enterprise features (agent
repositories, orchestrated work�ows) and MCP integration.

Across this landscape, the industry has converged on key enablers�durable
state, governance, MCP/A2A interop, and long-context models. Importantly,
pre-designed work�ows with persistent state are now �rst-class in several plat-
forms (LangGraph Server with persistence/queues/cron, Microsoft Agent Frame-
work with stateful work�ows, AgentCore with session-isolated runtimes). The
substrate for standing missions has arrived. What remains distinctive about ARS
is the topology governance layer: mission-by-design with authority schemas,
vertical coordination semantics, and bounded responsibility enforcement across
long-lived deployments.

5 ARS vs. Agent SDKs/Frameworks

ARS is a system category, not a competing framework. The platforms described
in Section 4 provide valuable infrastructure that could be leveraged to implement
an ARS. However, none enforce the ARS pattern as de�ned in Section 3. Here we
examine what each framework provides and where implementers would encounter
gaps:

LangGraph

LangGraph 1.0 with LangGraph Server o�ers the richest foundation for ARS
implementation among current frameworks. The platform provides built-in per-
sistence (PostgreSQL), task queues (Redis), assistants/threads/runs, cron jobs,
webhooks, checkpointing, and human-in-the-loop interrupts�delivering durable,
event-driven execution out of the box. The graph abstraction naturally supports
vertical message passing through parent-child node relationships.

Implementation gaps: LangGraph Server provides the durability and event-
ing infrastructure; the gap for ARS is topology governance across long-lived de-
ployments. An ARS implementer would need to: (1) de�ne authority schemas
that constrain who may delegate to whom and when, (2) encode responsibility
boundaries that persist across all job situations, not just individual work�ows,
and (3) implement vertical coordination semantics (delegate/report/escalate) as
enforced patterns rather than application-level conventions. The framework pro-
vides the substrate but doesn't enforce the ARS governance pattern�developers
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could equally well build mission-on-demand systems.

Anthropic Claude Agent SDK

The Claude Agent SDK emphasizes long-horizon autonomy, with observed 30+
hour coherent task execution. Its loop primitives (subagents, context compaction,
memory tools) support sustained reasoning, and Sonnet 4.5's extended context
makes it viable for complex, multi-step work. This positions Anthropic's o�ering
closest to ARS's continuous operation goal at the model level.

Implementation gaps: The SDK provides autonomous task completion
capabilities but no job topology abstraction. An ARS implementation would
require building: (1) a responsibility topology layer above individual agents, (2)
vertical coordination semantics for delegation and reporting, (3) a persistence ar-
chitecture ensuring the topology (not just individual agent state) survives across
sessions, and (4) an event plane for subscription-based activation rather than
task-driven invocation. The 30+ hour runtime is powerful for individual agents
but doesn't translate directly to inde�nite job-level operation with distributed
context across a topology.

AWS AgentCore

AgentCore provides production-grade infrastructure with governance, isolation
(micro-VMs), A2A protocol for inter-agent communication, and max 8-hour ses-
sions/async jobs. Its integration with multiple orchestration frameworks (Lang-
Graph, CrewAI, OpenAI Agents) positions it as a deployment platform rather
than an orchestration pattern.

Implementation gaps: AgentCore orchestrates dynamically assembled teams
per execution request. To implement ARS, one would need to: (1) maintain a
persistent agent topology that runs inde�nitely rather than per-invocation, (2)
encode mission-by-design such that the job's structure is �xed and reused, not
assembled on demand, (3) implement vertical coordination as a �rst-class pattern
rather than generic A2A messaging, and (4) ensure the runtime doesn't termi-
nate after task completion but continues monitoring subscriptions and schedules.
AgentCore provides robust infrastructure, but the standing mission model must
be architected on top.

OpenAI AgentKit

AgentKit's Agent Builder emphasizes visual multi-agent work�ow design with
per-task assembly. Its design-evaluate-deploy toolchain optimizes for rapid work-
�ow creation and re�nement through reinforcement �ne-tuning, targeting general-
purpose task automation rather than job specialization.

Implementation gaps: The per-task work�ow model is fundamentally at
odds with ARS's standing mission approach. Implementing ARS would require:
(1) abandoning or constraining the visual work�ow builder to enforce a �xed
topology, (2) adding persistence such that work�ows don't terminate after task
completion, (3) implementing vertical coordination patterns not native to the
work�ow model, and (4) shifting from prompt-driven invocation to event-driven
continuous operation. While the underlying GPT models are capable, the frame-
work's design philosophy diverges from ARS requirements.
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Microsoft Agent Framework & CrewAI

Microsoft's uni�ed SDK consolidates AutoGen and Semantic Kernel into a multi-
agent application platform. CrewAI o�ers orchestrated work�ows with agent
repositories and MCP integration. Both follow similar patterns: dynamic team
assembly, task-oriented execution, and �exible orchestration.

Implementation gaps: Similar to other frameworks, the primary gaps are:
lack of standing mission enforcement, no job topology abstraction, and task-
scoped rather than job-persistent operation. Implementers would need to build
ARS-speci�c layers atop the provided primitives.

Summary

These frameworks solve important problems in task automation, dynamic agent
coordination, and production deployment. An ARS implementation could lever-
age them as infrastructure�LangGraph for stateful orchestration, AgentCore for
governance and deployment, Claude models for capable reasoning�but would
require additional architectural layers to enforce the seven conformance require-
ments (Section 3) and the mission-by-design philosophy (Section 2). The frame-
works provide tools; ARS de�nes the pattern those tools must implement to
achieve continuous, job-focused autonomous operation.

6 Implementation Pattern: Industrial Operator (IO)

Industrial Operator (IO) is an ARS implementation designed for continuous au-
tonomous operation of industrial facilities. IO is currently deployed at Naturgy
for multi-plant control room operations and undergoing pilot deployment at
CERN's CMS experiment, with additional applications in development for petro-
chemical and production facilities. This section demonstrates how the ARS pat-
tern manifests in a real system operating in critical infrastructure.

Mission and Context

IO's standing mission is continuous facility operation: monitoring equipment
state, detecting anomalies, coordinating responses, and autonomously managing
routine operational decisions while escalating exceptional situations to human
operators. The system operates 24/7, handling hundreds of concurrent events
across facility subsystems through a pre-designed topology of specialized agents.

ARS Conformance

IO satis�es the seven ARS conformance requirements through the following ar-
chitecture:

1. Topology speci�cation: De�ned declaratively using SmartNodes++ (SN++)
[8] to con�gure WinCC OA Plant Model trees, which formalize agent respon-
sibilities and information surfaces.

2. Persistent state: Agent conversations and subscriptions are stored in per-
sistent databases, maintaining distributed context across system restarts.

3. Event plane: Built on Siemens WinCC OA [10] event-driven SCADA plat-
form, which provides high-performance pub/sub infrastructure. Agents create
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both pre-con�gured and dynamic subscriptions, including complex expressions
over event streams.

4. Vertical messaging: Implemented through an IO orchestration layer (Python-
based) coordinating agent communication. Agents maintain explicit knowl-
edge of their parent, children, and bounded responsibilities.

5. Memory: Agent working memory and experience memory are maintained in
separate databases with di�erent lifecycle policies, distinct from the conver-
sation threads.

6. Actuation: IO both suggests and executes actions�preparing commands for
operator review and, within validated boundaries, autonomously executing op-
erational procedures (setpoint adjustments, system commands, noti�cations).

7. Scalability: Topology depth adapts to facility complexity; agents observe
bounded information surfaces (equipment-level workers, area-level domain co-
ordinators, facility-level root).

Technical Foundation

IO leverages Siemens WinCC OA [10] SCADA as its event infrastructure and
real-time distributed database, integrating with operational technology (OT)
and information technology (IT) systems through WinCC OA's extensive driver
ecosystem. The SmartNodes++ framework [8] provides the ontology and lifecycle
management layer. Python orchestrates agent reasoning loops and inter-agent
coordination, delegating tool execution to the SCADA layer and external sys-
tems.

Deployment Status

IO is currently deployed in Naturgy's multi-plant control room, autonomously
supporting operations across 10+ gas turbine power plants throughout Spain and
growing. The system operates with progressive autonomy expansion�selected
processes run fully autonomously, while scope increases as operational valida-
tion accumulates. An ARS topology for CERN's CMS Detector Control System
[9] is in development, with pilot deployment scheduled for completion by year-
end 2025. Additional applications are in development for petrochemical and
production facilities. The system demonstrates that the ARS pattern�mission-
by-design with recursive cognitive decomposition�can operate reliably in critical
infrastructure contexts where continuous, coherent decision-making is essential.

Detailed performance metrics, operational insights, and topology design pat-
terns from these deployments will be published in subsequent releases of this
technical note.
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